Construction of Multi-Defective ZnMn2O4/Carbon Nitride Three-Dimensional System for Highly Efficient Photocatalytic Sulfamethoxazole Degradation

نویسندگان

چکیده

Rational design of composite nanostructured photocatalytic systems with good sunlight absorption capacity and efficient charge separation transfer ability is an urgent problem to be solved in photocatalysis research. Here, a ZnMn2O4 decorated three-dimensional carbon nitride O, C co-doping, nitrogen defect system was prepared using simple hydrothermal method subsequent calcination method. For the reactions, presence heterostructures, C, O defects greatly promotes charges at semiconductor/semiconductor interface under local electric field, thereby extending its service life. The degradation efficiency sulfamethoxazole water as high 94.3% synergistic effects, which also suitable for complex environment. In addition, synthesized photocatalyst has chemical stability recyclability. This study provides new opportunity solve environmental pollution.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen doped TiO2 for efficient visible light photocatalytic dye degradation

In this study, Nitrogen doped TiO2 photocatalysts were prepared by the sol gel method and physicochemical properties were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM), photoluminescence, and energy dispersive X-ray spectroscopy (DRS) techniques. The XRD data indicated that the nanoparticles had the same crystals structures as the pure TiO2</su...

متن کامل

One-step synthesis of highly efficient three-dimensional Cd1-xZnxS photocatalysts for visible light photocatalytic water splitting

Visible light accounts for about 43% of the solar spectrum, and developing highly efficient visible-light-driven photocatalyst is of special significance. In this work, highly efficient three-dimensional (3D) Cd1-xZnxS photocatalysts for hydrogen generation under the irradiation of visible light were synthesized via one-step solvothermal pathway. Scanning electron microscope, X-ray diffractomet...

متن کامل

Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride**

The major challenge of photocatalytic water splitting, the prototypical reaction for the direct production of hydrogen by using solar energy, is to develop low-cost yet highly efficient and stable semiconductor photocatalysts. Herein, an effective strategy for synthesizing extremely active graphitic carbon nitride (g-C3N4) from a low-cost precursor, urea, is reported. The g-C3N4 exhibits an ext...

متن کامل

Three-dimensional metallic boron nitride.

Boron nitride (BN) and carbon are chemical analogues of each other and share similar structures such as one-dimensional nanotubes, two-dimensional nanosheets characterized by sp(2) bonding, and three-dimensional diamond structures characterized by sp(3) bonding. However, unlike carbon which can be metallic in one, two, and three dimensions, BN is an insulator, irrespective of its structure and ...

متن کامل

Efficient Immobilised TiO2 in Polyvinylidene fluoride (PVDF) Membrane for Photocatalytic Degradation of Methylene Blue

Immobilised titanium dioxide (TiO2) in membrane structures has recently become attractive. This is due to the elimination of the separation step after the process of photocatalytic degradation. The efficiency of the TiO2 surface area exposed to UV light as the main important parameter needs to be considered. The immobilisation of TiO2 nanoparticles in the polyvinylidene fluoride (PVDF) membrane...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Catalysts

سال: 2023

ISSN: ['2073-4344']

DOI: https://doi.org/10.3390/catal13010172